621 research outputs found

    Direct measurement of the magnetic field effects on carrier mobilities and recombination in tri-(8-hydroxyquinoline)-aluminum based light-emitting diodes

    Full text link
    The magnetic field effects on the carrier mobilities and recombination in tri-(8-hydroxyquinoline)-aluminum (Alq3) based light-emitting diodes have been measured by the method of transient electroluminescence. It is confirmed that the magnetic field has no effect on the electron and hole mobilities in Alq3 layers and can decrease the electron-hole recombination coefficient. The results imply that the dominant mechanism for the magnetic field effects in Alq3 based light-emitting diodes is the interconversion between singlet e-h pairs and triplet e-h pairs modulated by the magnetic field when the driving voltage is larger than the onset voltage of the electroluminescence.Comment: 14 pages, 4 figures,The revised version submitted to applied physics letter

    DECK: Distance and environment-dependent, coarse-grained, knowledge-based potentials for protein-protein docking

    Get PDF
    Background: Computational approaches to protein-protein docking typically include scoring aimed at improving the rank of the near-native structure relative to the false-positive matches. Knowledge-based potentials improve modeling of protein complexes by taking advantage of the rapidly increasing amount of experimentally derived information on protein-protein association. An essential element of knowledge-based potentials is defining the reference state for an optimal description of the residue-residue (or atom-atom) pairs in the non-interaction state. Results: The study presents a new Distance- and Environment-dependent, Coarse-grained, Knowledge-based (DECK) potential for scoring of protein-protein docking predictions. Training sets of protein-protein matches were generated based on bound and unbound forms of proteins taken from the DOCKGROUND resource. Each residue was represented by a pseudo-atom in the geometric center of the side chain. To capture the long-range and the multi-body interactions, residues in different secondary structure elements at protein-protein interfaces were considered as different residue types. Five reference states for the potentials were defined and tested. The optimal reference state was selected and the cutoff effect on the distance-dependent potentials investigated. The potentials were validated on the docking decoys sets, showing better performance than the existing potentials used in scoring of protein-protein docking results. Conclusions: A novel residue-based statistical potential for protein-protein docking was developed and validated on docking decoy sets. The results show that the scoring function DECK can successfully identify near-native protein-protein matches and thus is useful in protein docking. In addition to the practical application of the potentials, the study provides insights into the relative utility of the reference states, the scope of the distance dependence, and the coarse-graining of the potentials

    The Change of Performance of Chinese Large-sized Private Enterprises and Its Determinants (2004-2006)

    Get PDF
    Using the data collected by All China Federation of Industry and Commerce, this paper studies the change of performance of Chinese large-sized private enterprises and its possible determinants. The study finds that the financing difficulty of private firms, due to Chinese government's control policy, is the major factor resulting in the worsening performance of these large private firms

    1-Dibenzylamino-1-de­oxy-4,5-O-isopropyl­idene-β-d-fructopyran­ose

    Get PDF
    The title compound C23H29NO5, synthesized by the Amadori rearrangement of α-d-glucose with dibenzyl­amine and the ketalization, is shown to be a β-anomer. The fructopyran­ose ring adopts a chair conformation. The two benzene rings form a dihedral angle of 68.9 (1)°. In the crystal, non–classical inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a three–dimensional network

    Template-Based Modeling of Protein-RNA Interactions

    Get PDF
    Protein-RNA complexes formed by specific recognition between RNA and RNA-binding proteins play an important role in biological processes. More than a thousand of such proteins in human are curated and many novel RNA-binding proteins are to be discovered. Due to limitations of experimental approaches, computational techniques are needed for characterization of protein-RNA interactions. Although much progress has been made, adequate methodologies reliably providing atomic resolution structural details are still lacking. Although protein-RNA free docking approaches proved to be useful, in general, the template-based approaches provide higher quality of predictions. Templates are key to building a high quality model. Sequence/structure relationships were studied based on a representative set of binary protein-RNA complexes from PDB. Several approaches were tested for pairwise target/template alignment. The analysis revealed a transition point between random and correct binding modes. The results showed that structural alignment is better than sequence alignment in identifying good templates, suitable for generating protein-RNA complexes close to the native structure, and outperforms free docking, successfully predicting complexes where the free docking fails, including cases of significant conformational change upon binding. A template-based protein-RNA interaction modeling protocol PRIME was developed and benchmarked on a representative set of complexes

    CIBZ, a Novel BTB Domain-Containing Protein, Is Involved in Mouse Spinal Cord Injury via Mitochondrial Pathway Independent of p53 Gene

    Get PDF
    Spinal cord injury (SCI) induces both primary uncontrollable mechanical injury and secondary controllable degeneration, which further results in the activation of cell death cascades that mediate delayed tissue damage. To alleviate its impairments and seek for an effective remedy, mRNA differential display was used to investigate gene mRNA expression profiling in mice following SCI. A specific Zinc finger and BTB domain-containing protein, CIBZ, was discovered to implicate in the SCI process for the first time. Further researches indicated that CIBZ was extensively distributed in various tissues, and the expression level was highest in muscle, followed by spinal cord, large intestine, kidney, spleen, thymus, lung, cerebrum, stomach, ovary and heart, respectively. After injury, the CIBZ expression decreased dramatically and reached the lowest level at 8 h, but it gradually increased to the maximal level at 7 d. Caspase-3 and C-terminal-binding protein (CtBP), two CIBZ-related proteins, showed similar tendency. Interestingly, p53 expression remained constant in all groups. Via flow cytometry (FCM) analysis, it was found that the cell death rate in SCI group markedly increased and reached the highest value 1 d after surgery and the mitochondrial transmembrane potential (ΔΨm) at 1 d was the lowest in all groups. Taken together, it is suggested that: (i) in the presence of CtBP, CIBZ gene is involved in secondary injury process and trigger the activation of apoptotic caspase-3 and bax genes independent of p53; (ii) abrupt down-regulation of CtBP at 8 h is a sign of mitochondria dysfunction and the onset of cell death; (iii) it could be used as an inhibitor or target drug of caspase-3 gene to improve spinal cord function
    corecore